Docker数据管理(数据卷&数据卷容器)

 2023-12-21  阅读 7  评论 0

摘要:生产环境中使用的过程中,往往需要对数据进行持久化,或者需要在多个容器之间进行数据共享,这必然涉及容器的数据管理操作。 容器中管理数据主要有两种方式: 1.数据卷(Data Volumes):容器内数据直接映射到本地主机环境;如何在容器内创建数据卷,并且把本地的目录或文件

Docker数据管理(数据卷&数据卷容器)

生产环境中使用的过程中,往往需要对数据进行持久化,或者需要在多个容器之间进行数据共享,这必然涉及容器的数据管理操作。

容器中管理数据主要有两种方式:

1.数据卷(Data Volumes):容器内数据直接映射到本地主机环境;如何在容器内创建数据卷,并且把本地的目录或文件挂载到容器内的数据卷中。
2.数据卷容器(Data Volume Containers):使用特定容器维护数据卷。如何使用数据卷容器在容器和主机、容器和容器之间共享数据,并实现数据的备份和恢复。

数据卷

数据卷是一个可供容器使用的特殊目录,它将主机操作系统目录直接映射进容器,类似于Linux中的mount操作。

数据卷可以提供很多有用的特性,如下所示:

1.数据卷可以在容器之间共享和重用,容器间传递数据将变得高效方便;
2.对数据卷内数据的修改会立马生效,无论是容器内操作还是本地操作;
3.对数据卷的更新不会影响镜像,解耦了应用和数据;
4.卷会一直存在,直到没有容器使用,可以安全地卸载它。

1.在容器内创建一个数据卷

在用docker run命令的时候,使用-v标记可以在容器内创建一个数据卷。多次重复使用-v标记可以创建多个数据卷。

下面使用training/webapp镜像创建一个web容器,并创建一个数据卷挂载到容器的/webapp目录:

$ docker run -d -P --name web -v /webapp training/webapp python app.py

-P是将暴露的端口,是自动映射到本地主机的临时端口。

2.挂载一个主机目录作为数据卷

使用-v标记也可以指定挂载一个本地的已有目录到容器中去作为数据卷(推荐方式)。

$ docker run -d -P --name web -v /src/webapp:/opt/webapp training/webapp python app.py

上面的命令加载主机的/src/webapp目录到容器的/opt/webapp目录。

这个功能在进行测试的时候十分方便,比如用户可以将一些程序或数据放到本地目录中,然后在容器内运行和使用。另外,本地目录的路径必须是绝对路径,如果目录不存在,Docker会自动创建。

Docker挂载数据卷的默认权限是读写(rw),用户也可以通过ro指定为只读:

$ docker run -d -P --name web -v /src/webapp:/opt/webapp:ro training/webapp python app.py

加了:ro之后,容器内对所挂载数据卷内的数据就无法修改了。

3.挂载一个本地主机文件作为数据卷

-v标记也可以从主机挂载单个文件到容器中作为数据卷(不推荐)。

$ docker run --rm -it -v ~/.bash_history:/.bash_history ubuntu /bin/bash

这样就可以记录在容器输入过的命令历史了。

如果直接挂载一个文件到容器,使用文件编辑工具,包括vi或者sed–in-place的时候,可能会造成文件inode的改变,从Docker 1.1.0起,这会导致报错误信息。所以推荐的方式是直接挂载文件所在的目录。

数据卷容器

如果用户需要在多个容器之间共享一些持续更新的数据,最简单的方式是使用数据卷容器。数据卷容器也是一个容器,但是它的目的是专门用来提供数据卷供其他容器挂载。

首先,创建一个数据卷容器dbdata,并在其中创建一个数据卷挂载到/dbdata:

$ docker run -it -v /dbdata --name dbdata ubuntu    root@3ed94f279b6f:/#  

查看/dbdata目录:

root@3ed94f279b6f:/# ls    bin  boot  dbdata  dev  etc  home  lib  lib64  media  mnt  opt  proc  root  run sbin  srv  sys  tmp  usr  var

然后,可以在其他容器中使用–volumes-from来挂载dbdata容器中的数据卷.

例如创建db1和db2两个容器,并从dbdata容器挂载数据卷:

$ docker run -it --volumes-from dbdata --name db1 ubuntu    $ docker run -it --volumes-from dbdata --name db2 ubuntu  

此时,容器db1和db2都挂载同一个数据卷到相同的/dbdata目录。三个容器任何一方在该目录下的写入,其他容器都可以看到。

例如,在dbdata容器中创建一个test文件,如下所示:

root@3ed94f279b6f:/# cd /dbdata    root@3ed94f279b6f:/dbdata# touch test    root@3ed94f279b6f:/dbdata# ls  

test

在db1容器内查看它:

$ docker run -it --volumes-from dbdata --name db1 ubuntu    root@4128d2d804b4:/# ls    bin boot dbdata dev etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr var    root@4128d2d804b4:/# ls dbdata/  

test

可以多次使用–volumes-from参数来从多个容器挂载多个数据卷。还可以从其他已经挂载了容器卷的容器来挂载数据卷。

使用–volumes-from参数所挂载数据卷的容器自身并不需要保持在运行状态。

如果删除了挂载的容器(包括dbdata、db1和db2),数据卷并不会被自动删除。如果要删除一个数据卷,必须在删除最后一个还挂载着它的容器时显式使用docker rm -v命令来指定同时删除关联的容器。

利用数据卷容器来迁移数据

可以利用数据卷容器对其中的数据卷进行备份、恢复,以实现数据的迁移。

下面介绍这两个操作。

1.备份

使用下面的命令来备份dbdata数据卷容器内的数据卷:

$ docker run --volumes-from dbdata -v $(pwd):/backup --name worker ubuntu tar cvf /backup/backup.tar /dbdata

首先利用ubuntu镜像创建了一个容器worker。使用–volumes-from dbdata参数来让worker容器挂载dbdata容器的数据卷(即dbdata数据卷),使用-v  $(pwd):/backup参数来挂载本地的当前目录到worker容器的/backup目录。worker容器启动后,使用了tar cvf  /backup/backup.tar /dbdata命令来将/dbdata下内容备份为容器内的/backup/backup.tar,即宿主主机当前目录下的backup.tar。

2.恢复

如果要将数据恢复到一个容器,可以按照下面的步骤操作。

首先创建一个带有数据卷的容器dbdata2:

$ docker run -v /dbdata --name dbdata2 ubuntu /bin/bash

然后创建另一个新的容器,挂载dbdata2的容器,并使用untar解压备份文件到所挂载的容器卷中:

$ docker run --volumes-from dbdata2 -v $(pwd):/backup --name worker ubuntu bash    cd /dbdata    tar xvf /backup/backup.tar  

提示:现在腾讯云新人点击注册然后实名认证后,可以点此一键领取2860元代金券,然后点此进入腾讯云活动页面参加优惠力度非常大的腾讯云3年和5年时长服务器活动,一次性买多年,免得续费贵,这样就可以获得最大的优惠折扣,省钱。

版权声明:xxxxxxxxx;

原文链接:https://lecms.nxtedu.cn/yunzhuji/89425.html

发表评论:

验证码

管理员

  • 内容1196382
  • 积分0
  • 金币0
关于我们
lecms主程序为免费提供使用,使用者不得将本系统应用于任何形式的非法用途,由此产生的一切法律风险,需由使用者自行承担,与本站和开发者无关。一旦使用lecms,表示您即承认您已阅读、理解并同意受此条款的约束,并遵守所有相应法律和法规。
联系方式
电话:
地址:广东省中山市
Email:admin@qq.com
注册登录
注册帐号
登录帐号

Copyright © 2022 LECMS Inc. 保留所有权利。 Powered by LECMS 3.0.3

页面耗时0.2266秒, 内存占用1.69 MB, 访问数据库18次

  • 我要关灯
    我要开灯
  • 客户电话
    lecms

    工作时间:8:00-18:00

    客服电话

    电子邮件

    admin@qq.com

  • 官方微信

    扫码二维码

    获取最新动态

  • 返回顶部